
RflCFE copy
NPS52-87-051

NAVAL POSTGRADUATE SCII\OOL
00 Monterey, California

D. C

ILECTE
FEB 16 1988

THESIS
TERRAIN CLASSIFICATION FROM

DIGITAL ELEVATION DATA USING
SLOPE AND CURVATURE INFORMATION

By

Brenda K. Goodpasture

December 1987

Thesis Advisor: Robert B. McGhee

Approved for public release; distribution is unlimited.

Prepared for:
USACDEC
Ft. Ord, California 93941

88 • 09 1'0 o

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin Kneale T. Marshall
Superintendent Acting Provost

This thesis is prepared in conjunction with research sponsored in part by contract from the
United States Army Combat Developments Experimentation Center (USACDEC) under MIPR
ATEC 88-86.

Reproduction of all or part of this report is authorized.

The issuance of this thesis as a technical report is concurred by:

Ja

ROBERT B. MCGHEE
Professor
of Computer Science

Reviewed by: Released by:

VINCENT Y./,t-S E
Chairman Acg ean of rmati n and
Department of Computer Science

&,, ~ W~.~% % %%%% .%9V

REPORT DOCUMENTATION PAGE
I&. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2&. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
OECLASSIFICATION/IDOWNGRADING SCHEDULE Distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NPS52-87-051

S. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School Code 52 Naval Postgraduate School
Gc. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

&.L NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

USACDEC ATEC 88-86
Sc. ADDRESS (City, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK IWORK UNIT
Ft. Ord, California 93941 ELEMENT NO. NO. NO ACESSION NO.

11. TITLE (Include Security Classfication)

TERRAIN CLASSIFICATION FROM DIGITAL ELEVATION DATA USING SLOPE AND
CURVATURE INFORMATION (u)
12. PERSONAL AUTHOR(SW

.Goodpasture, Brenda K.
13a. TYPE 9F REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
aster s Thesis FROM TO 1987 December 57
16. SUPPLEMENTARY NOTATION

5ii

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Terrain classification; artificial intelligence;
Robotics

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Over the past few decades man has concentrated considerable effort in
deriving algorithms that can classify terrain in a manner similar to the
human visual system. If an implementable algorithm were obtained, man could
se this algorithm to add vision to autonomous land vehicles. The applica-

tions of autonomous land vehicles are numerous. Movement of large military
equipment to previously inaccessible areas and the exploration of unknown
areas are examples. The scope of this study is to develop a database from
digital elevation data representive of terrain an autonomous land vehicle
would traverse and from this database use a two-dimensional algorithm to
.lassify the terrain represented by that data.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFiCATION
MlJNCLASSIFIED/UNLIMITED 0 SAME AS RPT. C DTIC USERS Unclassified

22P. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Prof. Robert McGhee (408) 646-2095 Code 52Mz
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions a, .obsolete UNC LA fi&1 J ,6 Pintin. office 19 ,,-6O6.243 V.

"-, " " ." " , " , . "." "-.' ":-,.' " .. ".. - . -it ' .. -. - -.

Approved for public release; distribution is unlimited.

Terrain Classification From
Digital Elevation Data Using

Slope And Curvature Information

by

Brenda K. Goodpasture
Lieutenant, United States Navy

B.S., Eastern Kentucky University, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

December 1987

Author. / ~Brenda I' Goo-dpa66r

Approved by: h3 r
Robert B. McGhee, Thesis Advisor

Michael J. Z)i& ,§on~d •dýerb

Vincent o/f~m,<halute Siec
Department"uerSiec

g Dean2Informati and licy Sciences

2

II ' o - I .l 11 ' 1 1 . 11 ' 1 1 1

ABSTRACT

> Over the past few decades man has concentrated considerable effort in deriving

algorithms that can classify terrain in a manner similar to the human visual system. If an

implementable algorithm were obtained, man could use this algorithm to add vision to

autonomous land vehicles. The applications of autonomous land vehicles are numerous.

Movement of large military equipment to previously inaccessible areas and the

exploration of unknown areas are examples. 'The scope of this study is to develop a

database from digital elevation data representive of terrain an autonomous land vehicle

would traverse and from this database use a two-dimensional algorithm to classify the

terrain represented by that data. F . - 7 w .-

SAccession For

-~eSG1F~A&F1
DTIC TAU f-
Ui,±nnounc'd [l

3 AViA

1) 1 tt i F. t '.,

TABLE OF CONTENTS

L INTRODUC17ION .. 7
A. GENERAL BACKGROUND .. 7
B. ORGANIZATION .. 7

H. SURVEY OF PREVIOUS WORK ... 9
A. INTRODUCTION .. 9
B. REPRESENTATION OF ELEVATION INFORMATION 9
C. DATA COMPRESSION METHODS .. 10

1. Surface Patches ... 11
2. Octres .. 11
3. Skeletal Lines .. 12
4. Gradient Lines .. 12

D. DATA RECONSTRUCTION .. 13
E. CLASSIFICATION SCHEMES ... 13

1. Neighborhood Comparisons ... 13
2. Slope Methods Using Planar Patches .. 14
3. Polynomial Methods .. 15
4. Other Methods ... 16

F. SUMMARY ... 16
MI. DETAILED PROBLEM STATEMENT ... 18

A. INTRODUCTION .. 18
B. DESCRIPTION OF DATABASE ... 18
C. QUADRATIC SURFACE PATCHES .. 19
D. VEHICLE MOBILITY MODEL .. 22
E. COMPUTATIONAL RESOURCES ... 22
F. SUMMARY ... 23

MI. IMPLEMENTATION OF CLASSIFICATION METHOD 24
A. INTRODUCTION .. 24
B. STRUCTURE OF THE SOFTWARE .. 24
C. USER'S GUIDE .. 27
D. SUMMARY .. 28

V. RESULTS ... 29
A. INTRODUCTION .. 29
B. TYPICAL MAPS 29
C. PERFORMANCE EVALUATION .. 32
D. SUMMARY .. 32

VI. SUMMARY AND CONCLUSIONS .. 33

4

Ii,

S • " ".€ , ,e •.• . . .•., ,• "..• ". ", -. ,-. ',.-,-'.- •.--.-. -- •..-, -.- •-.,- .- ,.- " .

A. RESEARCH CONTRIBUTIONS .. 33
B. RESEARCH EXTENSIONS ... 33

APPENDIX - LISP CODE FOR THE TERRAIN CLASSIFICATION
ALGORITHM .. 35

LIST OF REFERENCES .. 53
INITIAL DISTRIBUTION LIST ... 54

5

LIST OF FIGURES

4.1 Flow Chart of the Software .. 25 r
5.1 Classified Terrain Cell M aps ... 31 -

,,R

,N

6¾

bI

ii

* S.*

* -...- ~* %*

I. INTRODUCTION

A. GENERAL BACKGROUND

A foot soldier standing in a wide valley can survey his environment and choose the

best path from his position to a goal. The soldier knows intuitively that in order to reach

the peak of a nearby mountain it is to his advantage to traverse a ridge rather than a sheer

cliff. Likewise, a tank driver chooses a valley between mountains to reach his goal

instead of climbing over one of the mountains to obtain his destination. This study is

concerned with the logic humans use in terrain classification and route planning and with

the question of whether or not this logic can be converted into computer software so that

robots and other machines, such as autonomous land vehicles, can also have this same

capability.

The question posed in the above paragraph is a very important one to computer

scientists and engineers. With the ability to classify terrain as humans do, autonomous

vehicles can be used for various commercial and military purposes. It is with this

purpose in mind that millions of dollars have been poured into research involving the use

of both digital data and optical data for terrain classification. This study uses digital

elevation data to test a new algorithm for terrain classification.

B. ORGANIZATION

A discussion of previous work in terrain classification is presented in Chapter 11.

This chapter includes different ways of representing data as well as data compression

methods. Finally, an overview of various classification schemes of potential value in the

7

*I A'I

development of the classification algorithm implemented in this study is included. In

Chapter MII, the specific database used is described. The classification algorithm that is

investigated is also developed. In addition, a short description of the computer facilities

used is included. Chapter IV describes the structure of the software used. A detailed

analysis of the purpose of each major module of code is given. A user's manual for the

software is included in this section. Graphics results from the execution of the

classification algorithm are presented in Chapter V. Analysis of varying internal

thresholds is touched upon as well as performance analysis of the algorithm. Finally,

Chapter VI outlines the contributions made by this research and possible extensions into

other areas. A list of references and an appendix that contains the code for the algorithm

and necessary display graphics are included after Chapter IV.

8

""

II. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

Terrain classification has been a subject of interest to scientists for many years. It

has applications in the fields of artificial intelligence, hydrology and robotics [1]. Several

different models and algorithms have been proposed in these communities [2]. This

chapter gives a brief overview of selected ones.

B. REPRESENTATION OF ELEVATION INFORMATION

The most common method for representing surface characteristics is the contour

map. Paper maps based on this representation have been used for decades and have

certainly proven their utility. However, for computational purposes and economy of

storage, several alternative digitized methods for representing elevation information have

been developed.

The simplest digitized elevation model to manipulate is the grid digital elevation

model [2]. As its name implies, this model is set up as a grid of elevation points. The

elevation of each point in the grid is the only value that needs to be stored since the x,y

coordinate of each grid point can be calculated when needed. This model allows any

point in the grid to be accessed independently of others and allows links between grid

points to be followed if necessary. There are some disadvantages associated with this

model. Storing flat areas using this model results in considerable redundancy in the

9

matrix. If the grid resolution is not small enough, important information can be lost and

inaccurate results obtained.

Another digitized model involves the storing of contour lines and is appropriately

called the contour digital elevation model [2]. This model is more economical in storage

and retention of information than the grid digital elevation model. However, as with the

paper version of this model, it is difficult to manipulate and access the data.

Models that combine both the advantages of the grid and of the contour digital

elevation model have been proposed. Most of these models are based on the triangular

irregular network model [2]. This model divides a terrain surface into triangles. Flat

areas can be divided into large triangles while areas with more relief are divided into

smaller ones. These triangular areas are linked using a pointer list. Use of a pointer list

involves complex algorithms and increased storage requirements for each data point;

therefore, careful selection of data points is necessary to optimize this model. A major

disadvantage of this model occurs when a flat area abruptly changes to an area with

considerably more relief. It is difficult to maintain the triangular structure necessary for

the pointer list in this case. Triangles to join the two areas become long and narrow and

these triangles tend to diverge from the actual surface. This disadvantage is highly

undesirable in graphics displays of this model. [2]

C. DATA COMPRESSION METHODS

The above section described various models of representing elevation information.

These models work well for simple applications, but many applications need a higher

10

F - ýVWWV. mfny M WrW& 76F4nrWr V9VkVkTP-XrK% MN rM..vrvr .MtrNfr-WrVt,,

level of abstraction. This section deals with some methods of representing the digitized

databases in a more compressed manner.

1. Surface Patches

A common method of data compression used in graphics is surface patches 13].

A filled polygon is drawn using selected points in the database. Many polygons joined

together form contour features such as mountains. These polygons or patches resemble a

"smoothed" version of the terrain represented by the database [4]. This method is used to

give a visual display. A major disadvantage with graphics methods is storage of the

objects to be displayed. To be able to reproduce the polygons when needed, tables

containing the vertices, edge segments and polygon segments must be maintained in

memory. The algorithm utilized in this study classifies each data point rather than a

collection of data points like those represented by a terrain surface patch. Thus any

graphics representation of the terrain classification algorithm results are based on

individual points instead of a surface made up of several points. Therefore graphics

methods based on surface patches are not used.

2. Octrees

An octree is a hierarchical tree structure used to store three-dimensional objects.

To generate a node of the octree, a region of three-dimensional space is divided into

eight patches or octants. A data element for each of the octants is stored in the node. If

the octant is empty, then the individual element of the three-dimensional space or the

voxel type is "void." If all voxels of an octant are homogeneous, then the data elements

of the node are all the same. A heterogeneous octant is subdivided into octants and

11

• • •' '• '.•- •,'- ••- .-•.•¢, .. " ","." •'' o.• '-,•'....'..,,•_,,'¢'.'•.,• •'',':., '•.%. .N' V,''.o

pointers to the next node are stored in the appropriate data elements. This division

process continues until all voxels in the octant are homogeneous [3].

Octrees, as with all structures which make use of pointers, are complicated to

manipulate and require considerable storage area. Even a small mountain stored in an

octree structure can occupy two or three megabytes of memory. Creating objects

dynamically from an octree can take hours depending on the graphics method employed.

These disadvantages render use of octrees undesirable for most purposes.

3. Skeletal Lines

Skeletal lines are lines of points that show characteristics of the terrain they

represent [2]. For example, one way to classify the points in a digital terrain database is

to first look for the extremum points. Extremum points are pits or peaks. These are

points for which all surrounding neighbors are either higher or lower than the given

point. From these points, it is possible to aggregate surrounding points to identify hills

and dales. Extremum lines, lines that separate dales (ridge lines) or lines that separate

hills (channel lines), can then be identified by numerous algorithms. These extremum

lines and extremum points make up the skeletal lines and only the coordinates of the

points on these lines need to be recorded in a database of hills and dales. Skeletal lines

take up less storage space and are richer in information than a grid digital elevation

model.

4. Gradient Lines

Gradient lines, where they exist, are always orthogonal to contour lines. From a

database consisting of just gradient lines, a contour map of the terrain represented by the

database can be constructed by drawing a series of lines orthogonal to the gradient lines.

12

However, the reconstructed contour map does not contain the elevation of the contours.

This disadvantage of gradient line storage renders it of little value to humans who depend

on elevation values for planning purposes.

D. DATA RECONSTRUCTION

The data compression methods discussed above alter digitized databases by deleting

data. Graphics techniques rely on smoothing algorithms to approximate the original data

for displaying. These smoothing algorithms vary with the graphics method employed.

Some algorithms average data points while others selectively pick points depending upon

the heuristics defined for the algorithm. By using smoothing algorithms, data points are

deleted from the digitized database [3]. The skeletal lines method of compressing data

also deletes data from the database, but both methods preserve the general topography of

the surface.

E. CLASSIFICATION SCHEMES

Classification of terrain has been an area of intense research [2]. In the following

paragraphs, algorithms based on different approaches for solving this problem are

presented. Early algorithms were based on various neighborhood comparison schemes.

Later algorithms concentrated more on slope and polynomial fits to the terrain

surface [2].

1. Neighborhood Comparisons

Algorithms involving general neighborhood comparisons are considered to be

weak and unreliable methods for classifying terrain. These techniques "fail because they

do not conform to the rules of slope lines" [2]. Simply put, hill climbing via the eight

13

nearest neighbors is not equivalent to gradient ascent. Most of these algorithms require

sorting of the points in the database to find either the lowest or highest ones and from

them points, using comparison schemes, peaks or pits are developed depending on the

sorting method. Algorithms of this type usually result in erroneously classified points

called artifacts. Such artifacts render these algorithms undesirable for models that

require precision in the classification of terrain.

Neighborhood comparisons that do consider slope in classification of data points

have recently been developed. Of particular interest is the RICHLINE digital elevation

model described by Douglas [2]. This model smooths data before reading it into the

program. A neighborhood comparison scheme is then used to locate every data point

that is not a ridge. This procedure can also be used to find every data point that is not a 2'

channel. From this neighborhood comparison algorithm, a network of thick lines or

clouds is obtained. This network is thinned using an algorithm developed by

Pavlidis [5]. A skeleton network results from this thinning. The lines of the network are

then filtered using Douglas' three-dimensional line reduction algorithm. This model has L

been proven to be effective in the classification of ridge lines and channel lines. It is

more compact in storage than the grid digitized elevation model from which it is derived.

Graphical reconstruction of the terrain is possible using spline algorithms. [2]

2. Slope Methods Using Planar Patches

Slope methods using planar patches overcome the problems encountered using

the neighborhood comparison methods [2]. Slope is an important consideration in terrain

classification. By locating and tracing slope lines from each point upward, it can be

determined what peak each point belongs to, thereby defining individual hills. The same

14

procedure can be done for pits, thereby defining basins. Care must be taken in chosing

the slope lines. They must be the lines of greatest inclination through any point.

Algorithms that use real slope lines are proven methods for producing maps

showing the hills and basins of the terrain database [2]. However, these algorithms take

considerable processing time to locate ridges and channels. Such features are important

in terrain classification. Therefore this method is rarely used for this purpose [2].

3. Polynomial Methods

Recent classification algorithms have been based on polynomial fits. Of

particular interest to this study is the quadratic approximation of a surface by a least

squares fit. Two similar applications of the least squares fit are discussed in this section.

The first application is based on a digital picture approach, with the use of gray level

analysis to obtain a least squares fit. The second application involves a simulated grid

digitized elevation model and a least squares classification algorithm.

Digital pictures obtained by optical scanners or other vision systems contain a

wealth of information. By estimating the first- and second-order directional derivatives

from the gray level analysis, Haralick is able to classify important features of the

surface [6]. Zero-crossings of the first directional derivative categorize peaks, pits,

ridges, ravines and saddles. Comparison of the first-derivative with the second-derivative,

which determines the curvature of the terrain, finalizes the classification. Haralick also

experimented with fitting terrain to a bivariate cubic. While this method shows promise,

it needs refinement [6].

The second work of interest is that of Poulos [1]. In this work, a simulated grid

digitized elevation model is generated for use in the classification algorithm. A 3 x 3

15

grid cenl that represents the center data point and its eight nearest neighbors is used to

classify the center data point by using a least squares fit. Unlike Haralick, Poulos also

uses slope to classify terrain. Slope is an important factor in mobility of robots and ,l
'a

autonomous land vehicles. Poulos' work is concerned with robots and is the main basis "

for this study.

Though no known previous work has been performed with B-splines as a

classification tool, it appears to be a feasible method. B-splines are a type of bicubic

polynomial possessing the special property of first-order and second-order continuity,

which is desirable for terrain classification [3]. By approximating a terrain surface to a

B-spline, it may be possible to obtain a refined classification of the terrain. This topic is

presently in early stages of research at the Naval Postgraduate School.

4. Other Methods

Methods to classify terrain are not limited to the ones discussed in this section.

Algorithms are usually designed for a specific purpose. For example, if one were

concerned with vegetative cover or soil type in addition to terrain shape, the

classification algorithm would be thus modified. Such algorithms are beyond the scope of

this study. "

F. SUMMARY

Storage and representation of terrain data is an important aspect of terrain

classification. In this chapter, most of the widely used methods of storing and

representing terrain data have been discussed. As research continues in database storage,

new methods will be found to store and maintain terrain data.

16

.'S
-.'

Many different algorithms for classifying terrain were presented in this chapter.

These ranged from algorithms based on neighborhood comparisons to more advanced

ones such as quadratic fits. Research in this area is continually finding more precise

algorithms for classification.

The next chapter addresses the problems with terrain classification. A mathematical

model for the classification algorithm is presented which includes a simple kinematic

vehicle model.

17

M. DETAIED PROBLEM STATEMENT

A. INTRODUCTION

The main thrust of this study is to build upon the research of Poulos [1] by

expanding his algorithm to include additional cases that are presented by Haralick [61 in

his digital picture approach, and also to experiment with real rather than synthetic terrain

data

In this chapter, a description of the Fort Hunter-Liggett database, a digitized grid

elevation model, is presented. This database is used in experiments involving the

proposed algorithm. The mathematical basis for the classification algorithm, as well as

the vehicle mobility model and computational resources used in this study, are also

included.

B. DESCRIPTION OF DATABASE

The Fort Hunter-Liggett database is stored on the Unix1 VAX system at NPS and is

accessible through a program called make-database-e. The data in the file is an

unformatted sequential file that is arranged as a stream of integers. Each integer of

sixteen bits represents both a vegetation code and a bald terrain elevation in feet at a

particular point. To make use of the database in this study, the first three bits of the

integer are stripped away and the remaining bits are converted to the elevation. Since

sampling points are spaced at intervals of twelve and one-half meters, there are 6400 data

18

points in each kilometer of the database. A more detailed description of the database is

given in Smith and Streyle [4].

C. QUADRATIC SURFACE PATCHES

Poulos used a 3 x 3 window with the coordinates of each pixel measured relative to

the center pixel. In his approach, a quadratic function of x and y in the form

f (x,y)=kI + k2x + k3Y + k4x2 + k5 xy + ky2 (3.1)

is fitted to the 3 x 3 window. The values of the various coefficients, ki, appearing in this

equation can be obtained solving the equation

K =BZ (3.2)

where

K =kkl k2 k3 k4 k5 k6) (3.3)

-1/9 2/9 -1/9 2/9 5/9 2/9 -1/9 2/9 -1/9
-1/6 0 1/6 -1/6 0 1/6 -1/6 0 1/6

B 1/6 1/6 1/6 0 0 0 -1/6 -1/6 -1/6 (34)
1/6 -1/3 1/6 1/6 -1/3 1/6 1/6 -1/3 1/6

-1/4 0 1/4 0 0 0 1/4 0 -1/4
1 1/6 1/6 1/6 -1/3 -1/3 -1/3 1/6 1/6 1/6

and

z = Z Z 2 Z3 Z4 Z5 Z6 Z7 Z8 Z. (3.5)

The values for Z are the elevations of the data points in the 3 x 3 window. The ordering

of these points is important. The first row of the window (starting at the upper-left hand

corner) contains z1, z2 and z3. The middle row of the window is comprised of z4, z5 (the

19

S ' " " • " • % % " •-•"". m-% . = • . '. . ' ,,,'."• • ,'•,"••• .," • X''"''P''.•• d

center pixel), and z6. The last row follows in the same pattern. A more detailed

explanation can be found in Poulos [1].

Calculation of the slope at the center pixel is easily accomplished since the absolute

value of the magnitude of the gradient of the pixel is equivalent to the maximum slope at

that point [1]. Thus, since

Vf = (k 2 k 3) (3.6)

it follows that,

Slopeu n =(k 2 + k 3) . (3.7)

From Eq.(3.1), clearly the Hessian matrix is given by:

H= k 2k] (3.8)

The eigenvalues of the Hessian Matrix are required for the classification algorithm

described by Poulos. By solving the equation %

I H-V I =0 (3.9)

the two eigenvalues, X, and X2 are obtained. Classification of the center pixel is then

made on the basis of the eigenvalues (the absolute greater of the two is always XI) and

the slope. The resulting classification is then stored as a property of the center pixel.

Eigenvectors, calculated from the eigenvalues of the Hessian matrix, were not used

by Poulos for classification purposes. Haralick, however, uses them in his digital picture

approach [6]. This study uses an approach similar to Haralick's to achieve greater

precision in classification of ridges and channels in a digital database. Haralick's

20
4'.

..-

technique involves finding the dot product of the principal eigenvector (the eigenvector

associated with the largest eigenvalue of the Hessian Matrix) and the gradient at a given

pixel [6]. This technique is modified slightly in this study to use the normalized

eigenvector and gradient. To calculate the principal eigenvector, v 1, it is necessary to

solve the equation

[H- XI] v 1IBIvI=0 (3.10)

where

[2k4 - X, k5](.1

B1=[k5 2k6_-i (3.11)

From the first row of the previous equation, a solution for v 1 is clearly

V,= 1--*5 2k4 - ;L I. (3.12)

If the dot product is below a pre-defined threshold, then the eigenvector is considered to

be perpendicular to the gradient. Physically, this implies that the direction of greatest

curvature is orthogonal to the direction of greatest slope. This constitutes one way of

defining ridges and channels. Mathematically expressed

I Vf v IYf I < ... 1 threshold value. (3.13)
tVf I Ii'lI

The mathematical basis of this study has been established by Poulos and Haralick.

The algorithm presented here first classifies pixels by curvature using the eigenvalues.

Next, it classifies pixels by calculating the dot-product of the normalized principal

21

'. % . . 4 'r 'I

eigenvector and gradient. The results of both of these classifications are stored as

properties of the pixel in the database.

D. VEHICLE MOBILITY MODEL

A specific vehicle type was not used in this study. Instead, three slope ranges

specified by two slope values are used. These values can be changed to simulate

different types of vehicles.

The first value, which is called safe-slope in the program, delineates essentially flat

terrain from sloped terrain. The second value, which is called unsafe-slope in the

program, separates terrain with slopes that have been deemed safe for the vehicle from

slopes that would be hazardous to the vehicle.

Even though this vehicle mobility model is very simple, it serves to demonstrate the

ability of the terrain classification algorithm to appropriately categorize terrain pixels.

By changing the slope values to reflect a particular vehicle, those terrain cells negotiable

by the vehicle are revealed.

E. COMPUTATIONAL RESOURCES

Poulos used Franz Lisp operating on an ISI Optimum V workstation. This system

was found to be much slower than desired [1]. Several versions of Symbolics Lisp

Machines have been added to the facilities of the Computer Science Department in the

past year and these machines were used to implement the software. Although the various

Symbolics machines are similar, most of the coding and testing was done on a Symbolics

3675, in Common Lisp. A color display system on the Symbolics 3675 was used for the

22

graphics display portion of this study. An in-depth discussion of the software modules is

presented in Chapter IV.

F. SUMMARY

An important aspect of this study is the use of a real grid digitized elevation model.

Poulos did not have access to a real database and therefore, was forced to simulate one.

Simulated terrain does not reveal the full complexity of real terrain.

The mathematical basis for the classification algorithm is developed in this chapter.

A simple vehicle mobility model is also presented. From these models three major

categories of classification emerge. One is dependent on the curvature of the terrain and

another on the constraints of the vehicle mobility model. The slope determines the

primary classification. The three possible primary classifications are: level, safe-slope,

and unsafe-slope. The curvature of the terrain is described by the eigenvalues of the

Hessian matrix. From these the secondary classification is obtained. The seven possible

secondary classifications are: peak, depression, ridge, valley, planar, pass and saddle. In

addition, separating lines called ridge lines and channels are found from eigenvector and

gradient calculations.

23

,."

IV. IMPLEMENTATION OF CLASSIFICATION METHOD

A. INTRODUCTION

This chapter describes the structure of the software used in the implementation of the

terrain classification algorithm. The software is all coded in Common Lisp and uses the

tv package for graphics routines. At present, this software only executes on the

Symbolics 3675 because of the embedded graphics. A short user's guide is also included

in this chapter.

B. STRUCTURE OF THE SOFTWARE

The software for this program is located in four separate files. The grid-utilities.Iisp

file contains most of the functions needed to execute the classification algorithm. The

terrain-constants.lisp file is comprised of various constants used by functions in grid-

utilities.lisp. The conversion-factors.lisp file includes functions that convert from

English to Metric and other miscellaneous functions which are also used by functions in

grid-utilities.lisp. The last file, test.lisp, contains graphics functions which display the

classified terrain cell. The functions in this file are called from grid-utilities.lisp.

The top-level function run-program is located in the file grid-utilities.lisp. This

function, when called with the correct parameters, executes the classification algorithm.

The function run-program calls several lower-level functions. Figure 4.1 shows the

design of the software. The function make-tc-map is a macro that makes an array and

names it hunter. The function Ioad-tc-attribute loads the array with a given attribute.

24

RUN - PROGRAM

~1 _ _.MAKE-TC-MAP

LOAD-TC-ATTRIBUTE INPUT FILE

7[IX CALCULATE
EIGENVALUES

CALCULATE+- & SLOPE
GRADIENT LOAD-TC-MAP

flICLASSIFY

I RLINE-TEST

I,'

WRITE- OUTPUT FILE
CLASSIFICATION1H
E READ-IT.I

Figure 4.1 Flow Chart of Software

2S

Mws value associated with the attribute is read in from a designated input file. The

function load-tc-map is the main lower-level function located in this file. It calls two

functions directly and a third one indirectly. These functions are calculate-eigenvalues.

and-ldope, calculate-gradient and classify. The first two are self-explanatory by their

names. The third function, classify, does the terrain classification as described by

Poulos I . The function Ioad-tc-map adds several attributes and associated values to the

array. The function rline-test tests for ridges or channels by taking the dot-product

between the normalized principal eigenvector and gradient. This function also adds an

attribute-value pair to the array. The function write-classification tests for attributes

deemed to be important by the user of the software. This function presently considers

primary-class, secondary-class and rhine as important attributes. An output file is

generated by this function. This file contains code for the specific classificat;on of each

pixel. The name of this file is a parameter of the function run-program. The last

function, read-it, displays a color picture of the classified terrain cell on the color

monitor. It reads codes from the output file for this operation.

The software used in this study is designed in a modular manner. The variable

names used are self-explanatory. The four files together occupy less than 30K of

memory. The input files for Fort Hunter-Liggett take up 32K and the output files

consume approximately 14K. For one grid cell, approximately 75K of storage is needed.

A detailed user's guide follows.

26

-. 4

C. USER'S GUIDE

To execute the terrain classification algorithm, the Color world must be loaded on

the Symbolics 3675. As the system is currently set up, this is accomplished by halting

the machine and then typing boot, space, boot at the FEP command. As the machine

cold-boots, it will load the color world. Once this is finished, load the necessary files to

execute the algorithm. These files are: conversion-factors.lisp, terrain-constants.lisp,

grid-utifitieslisp and testlisp. When test.lisp is loaded, the machine prompts for the

monitor type. Click the mouse on 8-bit high resolution. Turn the color monitor on if it

is not already on. A blue window labeled Demonstration Window should appear on the

color monitor.

Three parameters are required to execute the program. These are the mapsize, name

of the input (data) file and the name of an output file. The mapsize represents the

square-root of the number of data points in the input file. This number must be an

integer. When using the Fort Hunter-Liggett database, mapsize is 10 for low-resolution

and 80 for high-resolution. The input file can be any file from the Fort Hunter-Liggett

database or one that is purely simulated. The output file is used for quick displays of the

graphics portion of the algorithm. Once an input file has been classified by the

algorithm, a code for each terrain feature is written into the output file. By using the

function display found in test.lisp, the classified color map can be displayed on the color

terminal with just the parameters mapsize and output file. This saves considerable time

when demonstrating the ability of the terrain classification algorithm.

A useful function included in grid-utilities.lisp is get-tc. This funciion retrieves the

attribute and value list of a particular location in the array. To view the list, simply type

27

the function name followed by the array name (which is always hunter in this program)

and the xy coordinates of the point (each can only be between 0 and mapsize). This

function can only be used after the entire program has been executed. The array is erased

when the machine is booted.

D. SUMMARY

A discussion of the functions used the terrain classification algorithm has been

presented in this chapter. Modularity was a key issue in the design of the software since

this study is just a small part of ongoing research in this area at NPS. The user's guide

gives the exact details on the operation of the algorithm. Chapter V presents typical

results expected from the classification algorithm and explains the meaning of the

different color codings.

28

VP ~..~.i.'~ ~ *.P~*'.* * ~ . -. -. ~., * .

V. RESULTS

A. INTRODUCTION

The classification algorithm developed in Chapter III describes a surface by a

quadratic least squares fit to a 3 x 3 window about each pixel. The algorithm also tests

for ridge lines and channels by taking the dot product of the normalized principal

eigenvector and gradient. If the dot product is below a pre-determined threshold, then

the pixel is classified as either a ridge or a channel. The mathematical basis for this

algorithm has previously been established by Poulos [1] and Haralick [6].

Poulos tested his algorithm on several terrain scenes. While these scenes were

machine-generated, they proved that the algorithm consistently classified major terrain

features correctly. In this chapter, two separate real-life terrain scenes are classified by

the proposed algorithm. The results are displayed on the Symbolics Color Monitor.

B. TYPICAL MAPS

The use of the Symbolics Color Monitor to display classified terrain cells offers a

great improvement over the bitmaps used by Poulos. By color coding the various terrain

categories, a more readable map is obtained.

Seven basic colors are used for the different terrain categories. Since a pixel could

possibly be classified in more than one category, the order of testing for the attribute

values decides which category is displayed. This order can be altered. All scenes in this

29

chapter have the same testing order. The table below states the correspondence between

the pixel color and its terrain category.

TABLE 5.1

CLASSIFICATION OF TERRAIN PIXELS BY COLOR CODE

COLOR CATEGORY

White Edge
Red Unsafe-slope
Blue Channel
Black Ridge
Yellow Planar
Green Flat
Orange Safe-slope

Figure 5.1 contains two separate examples of classified terrain cells as displayed

on the Symbolics Color Monitor. In conformity with the above table, the ordering for

testing of attribute values in these cells is: edge, unsafe-slope, flat, ridge, channel, planar,

and safe-slope. As can be seen, Figure 5.1(a) consists mainly of unsafe-slope pixels. A

ridge line and several peaks (flat areas surrounded by unsafe-slope) are also visible in the

center of the picture. A channel beginning in the upper right hand corner of the picture

and moving diagonally across it is also visible. Figure 5.1 (b) also reveals several peaks

and slight traces of ridges. Both pictures have areas where many terrain features are side

by side without a specific pattern. These areas do not contain major terrain features.

Slight abnormalities in the terrain surface and inaccurate elevation readings are possible

reasons for the classification of these pixels. By "smoothing" the data before analyzing

it, many of these artifacts can be made to disappear. Increasing the curvature threshold

causes more pixels to be classified as flat. However, the value for the threshold used in

this study represents a 10 foot change in elevation over a distance of thirty feet. This

30

Figure 5. 1a Terrain Cell Map

Figure 5.1b Terrain Cell Map

Figure 5.1 Classified Terrain Cell Maps

" -31

represents substantial curvature. Further work in this area is now in progress by other

students at NPS.

C. PERFORMANCE EVALUATION

Program modules are designed to do very specific tasks and can be used in other

programs. Because of the extent of the modularity, the program takes nearly six minutes

to execute. By compiling the program and re-arranging the code, the execution time can

be reduced by half. Poulos' algorithm, executing on the ISI in Franz Lisp, took 20

minutes to classify a simulated terrain cell of 900 data points [1]. By comparison, this

algorithm takes a maximum of six minutes and classifies 6400 data points. Evidently, use

of a Lisp Machine has resulted in a significant time savings which is important in time

critical uses of this algorithm.

D. SUMMARY

This chapter presented typical examples of classified terrain cells. The use cf

color to represent the classified terrain cells has significantly increased their readability.

This was a problem in previous work. In addition to improvements in readability, an

improvement in performance has also been achieved in this study. Specifically, in terms

of pixels processed per second, a speed up factor of roughly 25 has been achieved by

using a Lisp Machine as a host rather than a general purpose workstation. The next

chapter summarizes the major results of this study and also explores future extensions of

this work.

32
:I'

"" " " " " '" ""/."""" "" .7" •-'".-".;".-, '"- "- "."-....".".".-'-.-: "'-'--•

VI. SUMMARY AND CONCLUSIONS

A. RESEARCH CONTRIBUTIONS

This study has made several advances over previous work. The use of a Lisp

Machine to execute the classification algorithm is an important one. A Lisp Machine is

specially designed to execute Lisp code. For this reason, the execution time of the

classification algorithm has been significantly reduced.

A different method for finding ridges and channels that had not previously been

applied to a grid digital elevation model was introduced in this study. By taking the dot-

product between the normalized principle eigenvector and gradient, pixels not previously

classified as a ridge or channel could be identified as such if they were below the curve

threshold. This results in a more precise classification.

As a result of this study, software on terrain classification written in Common

Lisp and residing on the Symbolics 3675 now exists. It can be used as a basis for further

research or incorporated into library functions.

B. RESEARCH EXTENSIONS

Research in terrain classification is important to many fields of study. Artificial

intelligence programs involved in route planning can make use of the terrain

classification algorithm in computing costs for an A * search [7]. Watersheds can be

identified by classifying the terrain to reveal ridges and channels. This is an important

topic in hydrology [2]. The applications are numerous.

33

J.-...

Future research at NPS should involve the use of B-splines as a method of

smoothing the data before analyzing it. Other representations of the terrain surface such

as reconstructed color contour maps, possibly in three-dimensions, should also being

explored. The possibility of using a digitized picture in conjunction with the grid digital

elevation model to refine terrain analysis as well as identify cultural features buildings is

another area which ought to receive consideration. It is hoped the the work of this study

will encourage such investigations.

3,

34N

APPENDIX - LISP CODE FOR THE TERRAIN CLASSIFICATION ALGORiTIM

; LIST OF FUNCTIONS IN THIS FILE

rn 1. n-program - top function to run the digital terrain classification - inputs are

; mapsize which is the size of the array from the datafile, Le. for high resolution

;* the armywouldbe80x80,somapsizewouldbe80. The array must be a square to

; work in this program. The datafile is the input file and it must be in double

; quotes. The classfile is the output file and it also must be in double quotes.

;2. make-tc-map - makes an array with the name hunter and of the size given by the

S user.

; 3. load-tc-attribute - loads the array from the datafile with the slot given. In the

;* case of this program, it loads elevation, but other slots could be loaded.

;* 4. load-tc-map - loads the array with all necessary mathematical data and also

; primary and secondary classifications according to the eigenvalues of the Hessian

; matrix. In this example, the array is called hunter but it could be changed.

;* 5. rline-test - uses data from the array by accessing it's property list. From this

;* it determines if the pixels is a ridge or ravine line. This information is then

;* placed in the property list.

;* 6. write-classification - takes the array and outputs the desired information to the

;* classfile which is designated by the user. The output is in bitmap form and may

;* be changed to represent any desired data that the user wants.

;* 7. get-tc - this function allows the user to see the property list associated with

; particular spot in the array. The user must input the terrain-cell-map, in this

;* case, hunter and the x-coordinate and the y-coordinate of the desired spot.

;*8. get-te-group - this function allows the user to see a specific list associated

; with a give property of a 3 x 3 square of the array. The terrain-cell-map is

35

;* again named hunter and the x-coordinate/y-coordinate ae of the middle cell of the

; 3 x 3 square.

; 9. edge-tc-p - tests for edge pixels

;*10. corner-tc-p - tests for comer pixels

;* 11. range-tc-p - tests to see if the y-coordinate and x-coordinaze are within the size

; of the array.

;*12. calculate-eigenvalues-and-slope - this function is used by the load-tc-map

; function. It's inputs are five of the constants of the quadratic equation and it

; outputs a property list that is appended to each spot in the array.

;*13. classify - this function is called by load-tc-map and it classifies the pixel

;* according to the eigenvalues and the slope. This information is the appended to

; the property list in each spot in the array.

;*14. calculate-gradient - this function is called by load-tc-map and it calculates the

;* gradient which is appended to the property list in each spot in the array.

(defun run-program (mapsize datafile classfile)

(make-tc-map hunter mapsize)

(load-tc-atribute hunter datafile 'elevation)

(load-tc-map hunter)

(rline-test hunterXwrite-classification hunter classfile)(read-it mapsize classfile))

(defmacro make-tc-map (terrain-cell-map mapsize)

(list 'setq terrain-cell-map (list 'make-array (list 'list mapsize mapsize))))

(defun load-tc-attribute (terrain-cell-map datafile slot)

(setq input-stream (open datafile :direction :input))

(let ((mapsize (sqrt (array-total-size terrain-cell-map))))

(do ((xcoord 0 (1 + xcoord)))

36

,'-"-

(-xcoord mapsize))

(do ((ycoord (1- mapsize) (1- ycoord)))

((< ycoord 0))

(seaf (aref terrain-cell-map ycoord xcoord)

(cons slot (cons (read input-stream) (aref terrain-cell-map ycoord xcoord)))))))

(close input-stream))

(defun load-tc-map (terrain-cell-map)

(let ((mapsiZe (sqrt (way-total-size teffain-cell-map))))

(do ((coord 0 (1+ xcoord)))

* ((- xcoord mapsize))

(do ((ycocrd 0 (1+ ycoord)))

((= ycoord mapsize))

(cond

((edge-ic-p mapsize xcoord ycoord)

(setf (aref terrain-cell-map, (- (I- mapsize) ycoord) xcoord)

(append '(gradientl egde gradient2 edge

primary-class edge eigenvaluel edge eigenvalue2 edge

slope edge cigenvectori edge eigenvector2 edge)

(aref terrain-cell-map (- (I- mapsize) ycoord) xcoord))))

(t (lete ((z-matrix (mathatranspose-matrix

(make-amry '(19) : initial-contents

(list (mapcar 'feet-to-meter

(car (get-ic-group terrain-cell-map

xcoord ycoord 'elevation)))))))

(k-matrix (madi:multiply-matrices b-matrix-u z-matrix)))

(setf (aref terrain-cell-map (- (1- mapsize) ycoord) xcoord)

(append (classify (calculate-eigenvalues-and-slope

37

(aref- k-ati Ivre k-atx2

(aref k-matrix iXaref k-matrix 2)

(aref k-matrix 5)))

(aref terrain-cell-map

(-(- mapsize) ycooiii) xcoord)))

(seif (aref terrain-cell-map (- (1- mapsize) ycoord) xcoord)

(append (calculate-gradient (aref k-matrix 1)(aref k-matrix 2))

(aref terrain-celi-map,

(-I(- mapsize) ycoorl) xcoord))))))))))

(defun get-tc (terrain-cell-map xcoord ycoord)

(let ((mapsize (sqrt (array-total-size terrain-cell-map))))

(cond

((range-tc-p mapsize xcoord ycoord)

(arf terrain-cell-map (- (1- mapsize) ycoord) xcoord)))))

(defun get-tc-group (terain-celi-map xcaord ycoord slot)

(let ((mapsize (sqrt (array-total-size terrain-cell-mnap))))

(cond

((and (not (edge-tc-p mapsize xcoord ycoord)). 4

(range-Ic-p mapsize xcoord ycoord))

(list

(cons (getf (aref terrain-cell-map (- (- mapsize) (I+ ycoord)) (1 - xcoord)) slot)

(cons (getf (aref terrain-cell-map (-I(- mapsize) (1+ ycoord)) xcoord) slot)

(cons (getf (aref terrain-cell-map (-I(- mapsize) (1+ ycoord)) (1+ xcoord)) slot)

(cons (getf (aref terrain-cell-map (-(I- mapsize) ycoord) (1- xcoord)) slot)

(cons (getf (aref terrain-cell-map (-I(- mapsize) ycoord) xcoord) slot)

(cons (getf (aref terrain-cell-map (-I(- mapsize) ycoord)(1 xcoord)) slot)

38

(cons3W (gezf (arefT teran-celma (- (1 mpsz) 1-yccd) (- co))slt

(cons (getf (aref terain-cell-map (I (- mapsize) (1- ycoord))(I xcoord)) slot)

(cons (getf (aref terrai-cell-map (I (- mapsize) (1- ycoord))(1 xcoord)) slot)

(defun edge-tc-p (mapsize xcoord yc-oord)

(or (= xcoord 0)

(=ycoord 0)

(=xcoord (1- mapsize))

(=ycoord (I- mapsize))))

(defun corner-tc-p (mapsmz xcoord ycoord)

(or (and (- xcoord 0) (- ycoord 0))

(and (=xcoord 0) (=ycoord (1- inapsize)))

(and (=ycoord 0) (=xcoord (1- mapsize)))

(and (=ycoord (1- mapsize))

(- xcoord (1- mapsize)))))

(defun range-tc-p (mapsize xcoord ycoord)

(and (and (>= xcoord 0) (< xcoord mapsize))

(and (>= ycoord 0) (< ycoord mapsize))))

(defun calculate-cigenvalues-and-slope (k2 k3 k4 k5 k6)

(Iet* ((a (+ (* 2 k4)(* 2 k6)))(b (sqrt ((((-2.0 k4)(* 2.0 k6))(- (*-2.0 k4)

39

(2.0 W6)))

(0 4.0 (((*2.0 k4X* 2.0 k6)X* k5 kS))))))

(cigenvaluel (I (+ a b) 2.0)Xeigenvalue2 (t (- a b) 2.0)))

(setq slope (t (* 360.0 (alan (sqrt (+ (* k2 k2X* U3 k3))) 1.0)) 2.0 pi))

(coed ((< (abs cigenvaluciXabs cigenvalue2))

(setq temp 0)(setq temp eigeavaluelXsetq cigenvaluel. eigenvalue2)

(setq eigenvalue2 temp)))

OWet ((Bi1 (- (*2 M4) eigenvaluel)Xnumber 0)(B12 (- 0 k5)))

(sgq nornalizcd-eigenvector (sqrt (+ (*B12 B12X* B II Bi11))))

(coed ((- nr~malized-cigenveccwr 0)

(list 'cigenvaluel (eval eigenvaluel) 'eigenvalue2 (eval eigenvalue2)

'slope (eval slope) 'cigenvoctorl (eval number)

'egnvcr (eval number)))

(t (setq eigenvectorl, (0'(11 normalized-eigenvector) Bl11))

(setq eigenvector2 (* (11 normalized-igenvector) B 12))

(lis 'igenvaluel (eval cigenvaluel) 'eigenvalue2 (eval eigenvalue2) 'slope

(eval dlope) 'eigenvectorl. (eval eigenvectorl)

'eigenvector2 (eval eigwenvctor2)))))))

(defun classify (k)

(let ((El (second k)XE2 (fourth k)Xslope (sixth k)))

(coed ((< slope slope-limit)

(coed ((and (< ElI (- curv-thresholdD)

(< E2 (- curv-threshold)))

(append '(primary-class level seconday-class peak) k))

((and (> El curv-uthrshold)

(> E2 curv-thresholdD)

40

(append '(primary-class level secondary-class pit) k))

((and (< El (- curv-ftresod))

((abs, E2) curv-threshiold))

(append '(primary-class level secondary-class ridge) k))

((and. (> El curv-threshold)

((abs E2) curv-threshold))

(append '(primary-class level seconidary-class ravine) It))

((and (< El (- curv-hreshold))

(> E2 curv-thresliold))

(Wpend '(primary-class level secondary-class saddle) k))

((and (> ElI curv-threshold)

(< E2 (- cwrv-threshold)))

(append '(prmary-cass level secondary-class pass) k))

(t

(append '(primary-class level secondary-class flat) k))))

((> slope unsafe)

(append '(primary-class unsafe-slope) k))

(t

(cond ((and (<ElI (- curv-dihmiiold))

(E2 (- curv-thresbold)))

(append '(primary-class safe-slope secondary-class peak) k))

((and (> El curv-tbreshold)

(> E2 curv-thresholdD)

(append '(primary-class safe-slope seconday-class pit) kt))

((and (< El (- curv-threshiold))

((abs E2) curv-threshold))

(append '(primary-class safe-slope seconday-class ridge) k))

((and (> El curv-diresthold)

41

(< (abs E2) curv-threhold))

(append '(primary-class safe-slope secodary-cs ravine) k))

((and (< El (- cuv-ftresbold))

(> E2 curv-threshold))

(append '(primary-class safe-slope secondary-class saddle) k))

((and (> El curv-threshold)

(< E2 (- curv-thresliold)))

(apped '(primary-class safe-slope secondary-class pass) k))

ft

(append '(primary-class safe-slope secondary-class plana) k)))))))

(defun write-classification (terrain-cell-map classfile)

(setq output-stream (open classfile :direction :output))

(let ((mapsize (sqrt (array-total-size terrain-cell-map))))

(do ((ycoorl 0 (1+ ycoord)))

((-m ycoord mapsize))

(do ((xcoord 0 (1+ xcoord)))

((- xcoord mapsize))

(terpri output-stream)

(let ((first-class (getf (Aref terain-cell-miap ycoord xcoord) 'primary-class))

(slope (getf (aref terrain-ceil-map ycoord xcoord) 'slope))

(second-class (getf (aref terrain-cell-map ycoord xcoord) 'secondary-clas))

(r-ine (getf (aref terrain-cell-map ycoord xcoord) 'rline))

(eigenvectorl (getf (aref terain-cell-map ycoord xcoord)

'cigenvector I))

(eigenvector2 (getf (aref terrain-cell-map ycoorl xcoord)

'eigenvector2)))

42

((equal first-class 'level)

(cond ((equal second-class 'peak)(prinl '1 output-stram))

((equal second-class 'pifttpinl ' 2 output-stream))

((equal second-class 'ridge)(prini '1 output-starea))

((equal second-class 'ravme)(pfini '2 output-strem))

((equal second-class 'saddle)(prini '1 output-strem))

((equal second-class'pass)(prinl '2 output-surem))

((equal second-class 'flat)(prinl '3 output-starea))

(t

(prini '8 output-stream))))

((equal first-class 'safe-slope)

(coed ((equal second-class 'peak)(prinl 'I output-strem))

((equal second-class 'pit)(prinl '2 output-strem))

((equal second-class 'ridge)(prini '1 output-strem))

((equal second-class 'ravine)(prinl '2 output-stream))

((equal second-cass 'saddle)(ptini 'I output-sutram))

((equal second-class 'pass)(prinl '2 output-strem))

((equal second-class 'planar)(prinl '4 output-stream))

((equal r-Iine 'ridge)(prin I 'I output-streamn))

((equal M-ine 'ravine)(prini '2 output-sftrm))

(t

(prini1 '7 output-strem))))

((equal slope 'edge)(prin 1 '5 output-steamn))

((equal first-class 'unsafe-slope)(prini '6 output-sftrm)))))))

(close output-stream))

43

.~4~LLV

(defum calculese-gradlient (k2 U3)

(let ((slope (1 (0 360 (um~ (sqt (4. (* k2 k2X* U k3))) 1.0)) 2.0 pi)Xnwnber 0))

(cond

(>(abs, slope) 0)

(let ((gudienti (0 (/1I slope) k2)Xgradient2 (0 (/1 slope) k3)))

(list 'gradienti (eval gradienti)'gradient2

(eval gradient2))))

(list 'gradienti (eval number) 'gradiern2 (eval number)

(defun rline-test (terrain-cell-map)

(let ((mapsize (sqrt (army-total-size terrain-cell-map))))

(do ((xcoord 0 (1+ xcoord)))

(=xcoord mapsize))-

(do ((ycoord 0 (1+ ycoord)))

(unycoord mapsize))

(cond

((edge-ic-p mapsize xcoord ycoord)

(setf (aref terrain-cell-map (- (1- mapsize) ycoord) xcoord)

(append '(rline edge)

(aref terrain-cell-map (- (1- mapsize) ycoord) xcoord))))

(t (let ((gradientl (getf (aref terrain-cell-map ycoord xcoord)

'gradientl))

(gradient2 (getf (aref terrain-cell-map ycoord xcoord)

'gradient2)

(eigenvectori (getf (aref terrain-cell-map ycoord xcoord) '

'cigenvectori))

44
4

(aewnvectoC2 (geif (aref trasin-ceil-map ycoord xcoord)

weigenvete))

(primary-class (geif (aref wrain-cell-inap, ycof xcoord)

'primaIry-Class))

(eagenvaluel (getf (aref wrnun-ccll-niap, ycoord xcoorl)

'cigenvaluel)))

(Cowd

((equal primary-class3 'safe-slope)

(COWd

((eigenvoluel (- curv-hreshold))

(sezq dec-product (abs (+ (* gradient2 eigenvectori)

(0 gradfienti eigenveccor2))))

(cond

((< dot-product .001)

(setf (Aref terrain-ceil-map (- (I- mapsize) ycoord)

mcoord)

(append '(dine ridge)

(aref terrain-cefl-map

(I- (1- apsize) ycoord) xcoord))))

(setf (aref terrain-ceil-map (- (1- mapsize) ycoord) xcoorci)

(append '(dine no)

(aref terrain-cell-map 0-(- mapsize)

ycoord) xcoord))))))

((eigenvaluelI curv-thresbold)

(setq dot-product (abs (+ (* gradient2 cigenvectorl)

(gradienti eigenvector2))))

45

r af,, , -- '~.- fl a *vv.r. w-v~wr. 7P -, 0 r r Y -~y r ,r .r *i J L.L

(Coed

((< dot-prodct .001)

(med (met terrin-cell-map (- (1 - mapsize) ycoord) xcooird)

(Waped '(line ravine)

(vef terrain-cell-map

(I (- mapsize) ycoord) xcoord))))

(sei (aref terrain-cell-map (- (1 - mapsize) ycoord) xcoord)

(append '(dine no)

(vfet terrain-cell-mfap

(seit (vret terrain-cell-map (- (I- mapsize) ycoord) xcoord)

(append '(rlne no)

(aref terrain-ceil-map

(I (- mapsize) ycoord) xcoord))))))))))))

.*.**...**.**..***..**.*..*....*...e.....*a***...***********. **VW UMW

;THIS FILE CONTAINS THE FOLLO WING CONSTANTS

;1. curv-threshold - the amount of leadway that the cigenvalue has from zero when

;classifying the secondary classification

;2. slope-limit - the upper limit of the slope when classifying level terrain

;3. unsafe - the upper limit of the slope when classifying safe terrain, any slope

above this value is considered unsafe

;4. The various matrices referenced refer to the steps necessary to calculate the

;*B-matrix-u which allows us to calculate the K-matrix. See thesis narrative for

; more information.

;*THIS FILE IS NECESSARY TO EXECUTE (rnm-program mapsize dataffle classfile) LOCATED IN

;FILE GRID-LJTMI1TES.LISP

(setq curv-threshold 0.01)

(setq slope-limit 2.0)

(setq unsafe 28.0)

(setq A-matrix-u (make-array '(9 6) :initial-contents

(1 0 1 00 1)

(I I 1 1 1 1)

(1 -1 0 1 0 0)

(10 0 00 0)

(I11 0 1 0 0)

(1 -1 -1 11 1)

(1 0-1 00 1)

(11 -1 1))))

47

P, e Poe

(sezq AT-motix-u (madh:Uranspse-matrix A-matrix-u))

(wtq ATA-matrix-u (mazlmultiply-matrices AT-matrix-u A-matrix-u))

(sesq ATAI-matrix-u (mathinvcrtmatrix ATA-matrix-u))

(scetq B-matrix-u (math:multiply-matrices ATAI-miatrix-u AT-matrix-u))

48

M .- l -rTvllmw. %M I M yr"

;THIS FILE CONTAINS SEVERAL MISCELLANEOUS FUNCTIONS CALLED BY (run-program mapsi

;datafile classfile) LOCATED IN GRID-UTHIiTIES.LISP. THIfS FILE MUST BE INCLUDED IN THE

;*LISP WORLD TO EXECUTE (run-program mapsize datafile classffle).

(defun feet-to-meter (feet)

(feet 0.3048))

(defun meter-to-feet (meter)

(* meter 3.281))

(defun mad-to-degree (radians)

(1radians 0.0174533))

(defun degree-to-mad (degrees)

(* degrees 0.0174533))

(defun arctan (y x)

(cond

((or (and (minusp y) (minusp x))

(and (plusp y) (plusp x)))

(mad-to-degree (atan (abs y) (abs x))))

(t (- (mad-to-degree (atan (abs y) (abs x)))))))

49

THIS FILE CONTAINS GRAPHICS ROUTINES USED BY GRID-UTILITIES LISP

IT MUST BE L.OADED PRIOR TO EXECUTING (RUN-PROGRAM) IN GRID-UTILITIS LISP

INFORMATION ON THE PARANMEERS AND KEYWORDS OF THESE FUNCTIONS CAN BE

FOUND IN THE M[ANUAL FOR THE COLOR SYMBOLICS

(defun make-~color-window

(® options &key (superior (colorfnd-color-scrcen: create-p t))

&;ailow-othe-keys)

(apply #'tvinake-window 'tv~window

.blinker-p nil

.borders 2

.save-bits nil .

:expose-p t

:label "Demnonstration Window"

:superior superior

options))

(defvar *color-window* (make-color-window))

(defun make-blue-window (&rest options)

(apply #'make-color-window -

.erase-aluf(send colorcolor-screen

:comnpute-color-alu

tv:alu-set 0 00.4)

options))

(defvar *blue-window* (make-blue-window))

so,

(defvar *orageoJ11* (send(send *blue-window* :screen)

:compute-color-alu

color~alu-x 1.0 0.5 0.0))

(defvar *greenalu* (send(send *blue-window* :scr~ew)

:compute-color-alu

color~alu-x 0 0.8 0))

(defvar *red.alj* (send(send *blue-window* :screen)

:comnpute-color-alu

color-alu-x 0.9 00))

(defvar *blue-alu* (send(send *blue-wirndow* :screen)

:compute-color-alu

color.alu-x 0 00.8))

(defvar *white.auj* (send(send *blue-window* :screen)

:comnpute-color-alu

color.a1u-x 1. 1.U 1UI.0))

(defvar *black-alu* (send(send *bu-idw :screen)

:compute-color-alu

color~alu-x 0 00))

(defvar *yeilow-alu* (send(send *blue-window* :screen)

:comnpute-color-alu (

coloralu-x 1.0.93 0.2)) I

(defwi box (xcoord ycoord shade) V

(send *blue-window* :draw-rectangle 10 10 xcoord ycoord shade))

S1

(defuin read-it (mapsize classifie)

(setq input-stream (open classfile :direction :input))

(do ((ycoord 100 (+ ycoord 10)))

((= ycocrd (+ (* 10 mapsize) 100)))

(do ((xcoord 25 (1+ xcoord)))

(=xcoord (+ mapsize 25)))

(let ((x (read input-stream)))

(cond

(=x 1)(box (10 xcoord) ycoord *black-alu*))

(=x 2)(box (*10 xcoord) ycoord *blue-au*))

(=x 3)(box (510 xcoord) ycoord *gree..alu*))

(=x 4)(box (510 xcoord) ycoord *yeliow-alu*))

(=x 5)(box (510 xcoord) ycoord *white-alu*))

(=x 6)(box (510 xcoord) ycoord *red-alu*))

(=x 7)(box (10 xcoord) ycoord *orange-alu*))))))

(close input-stream))

S2

N1

LIST OF REFERENCES

[1] Poulos, D. D., "Range Image Processing for Local Navigation of an Autonomous

Land Vehicle," M. S. Thesis, Naval Postgraduate School, Monterey, California,

September 1986.

[2] Douglas, D. H., "Experiments to Locate Ridges and Channels to Create a New

Type .;& Digital Elevation Model," Cartographica Vol. 23, No. 4, (Winter 1986).

[3] Hearn, D. and Baker, M. P., Computer Graphics (Prentice-Hall, Englewood, New

Jersey, 1986).

[4] Smith, D. B. and Streyle, D. G., "An Inexpensive Real-Time Interactive Three-

Dimensional Flight Simulation System," M. S. Thesis, Naval Postgraduate School,

Monterey, California, June 1987.

[5] Pavlidis, T., Algorithms for Graphics and Image Processing (Computer Science

Press, Rockville, Maryland, 1982).

[6] Haralick, R. M., Watson, L. T., and Laffey, T. J., "The Topographic Primal

Sketch ," The International Journal of Robotics Research Vol. 2, No. 1, (Spring

1983).

[7] Winston, P. H., Artificial Intelligence (Addison-Wesley, Reading, Massachusetts,

1984).

53

S~~~ N~ ~ ~ -. ~ ~-.V .- >

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

3. Chief of Naval Operations
Director, Information Systems (OP-945)
Navy Department
Washington, D.C. 20350-2000

4. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

5. US Army Combat Developments
Experimentation Center (USACDEC)
Attention: W. D. West
Fort Ord, California 93941

6. Curriculum Officer, Code 37
Computer Technology
Naval Postgraduate School
Monterey, California 93943-5000

7. Professor Robert B. McGhee, Code 52MZ 13
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

8. Professor Michael J. Zyda, Code 52ZK
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

54

9. Mr. M. A. Hunter
Route 1, McClure Road
Winchester, Kentucky 40391

10. Ms. Carol Hunter 2
504 Mallard Park
Versailles, Kentucky 40383

11. United States Military Academy
Department of Geography & Computer Science
ATTN: Major R. F. Richbourg
West Point, New York 10996-1695

12. Artificial Intelligence Center
HQDA OCSA
ATTN: DACS-DMA
The Pentagon RM 1D659
Washington, D.C 20310-0200

13. Director of Research Administration, Code 012
Naval Postgraduate School
Monterey, California 93943

55

